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Fault Injection (FI) attacks

● Introducing faults (voltage, laser, etc.) 

● Analyzing the device responses to get the secret information

Differential Fault Analysis (DFA)

● Analyzing correct/faulty output pairs and comparing them

Security evaluation of hardware devices

Focus of this work

● Efficiently injecting faults



Introducing faults

Voltage glitching

Clock glitching

Electromagnetic fault injection (EMFI)

Laser fault injection (LFI)

Problem: choosing multiple parameters required for effective 
faults



Parameter search space size

EMFI*, 5 parameters: 24 × 24mm chip size with a 

0.05mm repositioning error

● at ≈ 0.16 sec per point, an exhaustive 

search would take 29 203 years to conduct

* Maldini, A., Samwel, N., Picek, S., Batina, L.: Genetic algorithm-based electromagnetic fault injection. In: 2018 Workshop 

on Fault Diagnosis and Tolerance in Cryptography (FDTC). pp. 35-42. IEEE (2018)

LFI, 5 parameters: reduced intervals

● at ≈ 0.16 sec per point, for 31,7 million 

possibilities it would take ≈ 59 days 



Current search algorithms

Exhaustive search, random search

● In areas known to be sensitive to the fault injection (based on previous experience)

Issues:

● Time-consuming and non-deterministic process

● Measurement results obtained on one setup cannot easily be reproduced by another

● Expertise not easy to obtain

Focus of this work

● Efficient exploring parameter space



Laser Fault Injection (LFI) attacks

Parameters

Location on the device: x, y

Distance from the lens of the microscope

Spot size

Laser settings: wavelength, pulse width, 

repetition rate, duration, power, etc.



Parameter selection using Evolutionary Algorithms

Already done for voltage glitching and EMFI

Using Genetic Algorithms (GA) and Memetic Algorithms (MA)

● Population-based algorithms

● Evolution through iterations

● MA: GA + local search

How to use Memetic Algorithm for LFI parameter selection?



Memetic Algorithm (MA) for LFI

Simple genetic algorithm with Hooke-Jeeves algorithm for local 

search
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End



Initial population

Solutions in our case

Set of parameters (x, y, delay, laser pulse width, and laser intensity)
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No

Initialize population
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Terminate?

Selection

Crossover

Mutation

New population

Local Search

End



Evaluation function

Conduct the laser shot several times for all solutions

Include sorting algorithm:

● Sort the x and y coordinates

● greedy algorithm based on Manhattan distance between the 

points

Device response categorized into one of the fault classes: pass, mute, 

fail and changing

Yes

No
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Terminate?

Selection
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Mutation

New population

Local Search

End

Fitness for changing is calculated: 



Termination condition

We consider only the number of iterations

● Set by user

● When maximum number of iteration is reached, the algorithm 

ends

Iteration: GA operators + Local search
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Selection operator

Fitness proportionate selection (roulette wheel)
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Crossover operator

Average crossover
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Mutation
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Local Search: Hooke-Jeeves algorithm

Solutions with fitness > 85% of the maximum fitness (10)
At most 3 are randomly selected for local search
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Elitism

Best solutions taken to a new generation without modification

● Elite size
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Experimental Setup

Test chip from STMicroelectronics using 40nm technology

The laser faults are injected while loading a data word into a register from non-volatile memory (NVM)

Parameters: subsets of the available values

Number of measurements per solution: 5

Number of runs for each test case: 5



Comparing Random Search and MA

Random Search: no duplicate solutions

Memetic algorithm with random initialization: number of iterations 200, population size 36, elite size 2, 

mutation probability 0.05

Algorithm Tested 

parameters

Fails (%) Changing 

(%)

Mute (%) Pass (%)

Random 9130 0.9 2.58 2.54 93.98

Memetic 9034.6 31.03 7.11 3.64 58.22



Initialization methods

Random initialization - most often

Latin Hypercube Sampling (LHS)

LHS with multidimensional uniformity (LHSMDU)

Taguchi method

Example of OA with strength 2, 
number of experiments 4, 3 
factors, and 2 factor levels.

https://pypi.org/project/pyDOE2/
https://pypi.org/project/lhsmdu/
https://pypi.org/project/OApackage/

https://pypi.org/project/pyDOE2/
https://pypi.org/project/lhsmdu/
https://pypi.org/project/OApackage/


Comparison with smaller population

Population size 36, elite size 2, mutation probability 0.05, number of iterations 200

Taguchi method, OA of 36 samples, with strength 2, and factor levels 3,3,3,2,2 

Initialization Tested 

parameters

Fails (%) Changing 

(%)

Mute (%) Pass (%)

Random 9034.6 31.03 7.11 3.64 58.22

LHS 8812.8 28.8 7.73 4.59 58.88

LHSMDU 9605 33.92 7.67 3.02 55.4

Taguchi 9070.2 31.58 6.87 3.33 58.23



Comparison with bigger population

Population size 128, elite size 10, mutation probability 0.05, number of iterations 200

Taguchi method, OA of 128 samples, with strength 2, and factor level 2 for all variables

Initialization Tested 

parameters

Fails (%) Changing 

(%)

Mute (%) Pass (%)

Random 23226.6 22.07 6.55 4.19 67.18

LHS 22183 20.24 6.55 3.42 69.8

LHSMDU 22578.8 21.19 6.77 3.32 68.72

Taguchi 24440 22.85 6.99 2.31 67.86



Stability with a smaller population

LHSMDU most stable, but not as good results as some runs of Random and Taguchi



Stability with a bigger population

Taguchi initialization is more stable with a larger population

LHSMDU – a bit worse performance with larger population

● Divides the intervals into the number of samples (population 

size)

● A lot of values get mapped to the same value

Random - the stability improved with a larger population

● We do not allow duplicate parameter sets

LHS - problem of the dimensionality



Conclusion

Memetic algorithm improved the results compared to random search

● 0.9% fail classes found by random search, 31.03% found with MA

On average, initialization techniques do not have a significant influence on the performance (considering 

the percentage of found fail classes)

The difference between the worst and best case for smaller population is 5.12%, while with the larger 

population it is 2.61%

Stability can be considered if we do not have time to run the algorithm multiple times

● LHSMDU and Taguchi are then preferred

Without great overhead, it is better to use sampling that promotes a well-distributed samples for the initial 

population, even more if a small population is used



Future work

This work is limited to one target, therefore the plan is to test the algorithm on different targets (e.g. 

running some encryption algorithm)

Distinguish between exploitable faulty outputs 

Use orthogonal arrays with more factor levels, as it could improve the Taguchi method even more

Investigate which parameters would benefit more from a good distribution in the initial set



Thank you!

Questions?


